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ABSTRACT

Heat-transfer and pressure measurements were obtained from a flight

test of a 1/18-scale model of the Titan intercontinental ballistic mis-

sile up to a Mach number of 3.86 and Reynolds number per foot of

23.5 × 106 and are compared with the data of two previously tested 1/18-

scale models. Boundary-layer transition was observed on the nose of

the model. Van Driest's theory predicted heat-transfer coefficients

reasonably well for the fully laminar flow but predictions made by

Van Driest's theory for turbulent flow were considerably higher than

the measurements when the skin was being heated. Comparison with the

flight test of two similar models shows fair repeatability of the meas-

urements for fully laminar or turbulent flow.
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SUMMARY

Heat-transfer and pressure measurements were obtained from a flight

test of the third 1/18-scale model of the Titan intercontinental ballis-

tic missile up to a Mach number of 3.86 and Reynolds number per foot of

23.5 × 106 and compared with the data of two previously tested 1/18-

scale models. Boundary-layer transition was observed on the nose of the

model. Van Driest's theory predicted heat-transfer coefficients reason-

ably well for the fully laminar flow, but predictions made by the

Van Driest theory for turbulent flow were considerably higher than the

measurements when the skin was being heated. Comparison with the flight

test of two similar models shows fair repeatability of the measurements

for fully laminar or turbulent flow.



INTRODUCTION

Because of the several geometric transition regions on the first
and second stages of the Titan intercontinental ballistic missile,
local conditions and, consequently, heating are difficult to estimate.
Heating on a vehicle of this type is critical because of the thin metal
skin used to keep the weight to a minimum.

From available theories and empirical relationships, the heat trans-
fer was estimated for the existing design. Zn order to establish the
validity of these estimates, the U. S. Air Force has requested the
National Advisory Committee for Aeronautics to conduct flight tests of
three 1/18-scale models. The first of the series of scale models was a
replica of the first and second stages of the full-scale Titan, with a
hemispherical nose tip. The second model of the series differed from
the first only in that it had a moreblunt nose tip. The third model,
discussed herein, was identical to the first model. These tests were
conducted at the Machnumbersand Reynolds n_bers approximately equal
to those for which the full-scale Titan expe_'iences maximumheating
rates.

The flight models were designed and con_tructed by the airframe
contractor, the Martin Companyof Denver, CoLorado. They were instru-
mented at the Langley Laboratory and flight _ested at the Langley
Pilotless Aircraft Research Station at Wallops Island, Virginia.

The results of the first flight test of the series are presented
in reference i, and the results of the seconl flight test were presented
in reference 2. Presented herein are the results of the third flight
test. The heat-transfer data are presented Ln the form of Stanton num-
bers reduced from measuredwall temperatures and measured flight and
wind-tunnel pressures. Comparison is madewLth the heat-transfer meas-
urements from the first and secondmodels of this series.

The Machnumberrange for which data were obtained was from 1.09
to 5.86 amdthe corresponding free-stream ReFnolds numberper foot ranged
from 8.3 x 106 to 25.9 x 106.

SYMBOLS

A area, sq ft

Cf local skin-friction coefficient



Cp

Cp_w

Cp

h

tt

K

Z

M

Npr

NSt

Pl'P2" " "P7

P

Q

q

R

T

T 1, T 2 • . . T12

t

V

X

rl r

specific heat of air at constant pressure, Btu/slug-°R

specific heat of Inconel, Btu/ib-°R

pressure coefficient, PZ - p_
q_

heat-transfer coefficient, Btu/sec-ft2-°R

altitude, ft

conductivity of air, Btu/sec-ft-°R

distance along body from stagnation point, in.

Mach number

Prandtl number,

Stanton number,

Cp_/K

h/CpOV

pressure stations

pressure, ib/sq in.

quantity of heat, Btu

dynamic pressure, 0.7P M 2, ib/sq in.

Reynolds number, R_I = pV_/_ and RZ = pV_/_

temperature, oR

temperature stations

time, sec

velocity, ft/sec

distance measured longitudinally along surface from model

station 0 (see fig. 2)

recovery factor, Taw - T_

Ts - T_

density, slugs/cu ft
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Subscripts:

W

aw

S

i

thickness, ft

viscosity of air, slugs/ft-sec

meridian angle, deg

free stream

outside boundary layer

pertaining to wall

adiabatic wall

stagnation

based on length of i foot

MODEL

The model used for this test was a 1/18-_cale model of the Titan

intercontinental ballistic missile. Photogr_)hs of the test model are

presented in figure i and a sketch of the co_i_lete model and nose

detail, showing pressure pickups and thermocolple locations, is pre-

sented in figure 2. The outer skin of the molel was constructed of

O.035-inch Inconel and hand polished to a surface roughness of 4 to

12 microinches (measured from peak to valley by interference microscope).

The inner shell of the body, which acted as a radiation shield, was con-

structed of 0.050-inch-thick aluminum alloy. Metal-to-metal contact

between the inner and outer bodies was eliminlted by using three ceramic

rings located at model stations O, 8, and 17. The ceramic rings were

thin and thus conduction was minimized.

The nose shape used in this test was the same as the nose used in

reference i. There were seven thermocouples _nd four pressure orifices

on the nose, the positions being given in figJre 2. With the exception

of the stagnation pressure orifice, the pressure orifices are located

diametrically opposite the corresponding temperature measuring stations.

Also given in figure 2 is the skin thickness _t each thermocouple

location.

The cylinder-flare portion of the model was the same as used in

references i and 2. There were three thermocouples and one pressure

orifice on the cylinder and two thermocouples and two pressure orifices

l

4
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on the flare. The pressure orifices were located diametrically opposite

the thermocouples. This portion of the model can also be seen in

figure 2.

INSTRUMENTATION AND TEST

The model was instrumented with the NACA lO-channel telemeter. A

single channel was used to transmit the skin temperatures from 12 thermo-

couples on the model. The commutation rate and the electronic system

were such that each thermocouple measurement was sampled at about every

0.2 second. Three constant voltages were also commutated on the tempera-

ture channel. The constant voltages were chosen to be equivalent to the

lowest, middle, and highest temperatures anticipated in flight and pro-

vide an in-fiight calibration of the thermocouple telemetering system.

The thermocouples were No. 30 chromel-alumel and were spot welded to

the inner surface of the skin at the stations shown in figure 2(a).

The measured temperatures are believed to be within ±2 percent of

the full-scale temperature range and have an accuracy of ±22 ° F.

Two telemeter channels were used to transmit normal and transverse

accelerations. These measurements were made continuously during flight

by a normal and a transverse accelerometer, each being calibrated, before

flight, in gravitational units to cover ranges of ±Sg. Seven channels

were used to transmit continuous absolute pressures along the body. Each

pressure channel was calibrated to cover the expected pressure range at

that particular orifice. The instrument at pressure station PI was cal-

ibrated to cover a range from 0 to 265 pounds per square inch. The

pressure instrlaments at stations P2' P3' and P4 were calibrated to cover

a range from 0 to 35 pounds per square inch. The pressure instruments

on the cylinder and flare (stations P5' P6, and P7) were calibrated to
cover ranges from -I0 to +i0 pounds per square inch (cylinder) and 0 to

95 pounds per square inch (flare). The accuracy of the measured quanti-

ties is believed to be within ±2 percent of the full-scale range of the

particular channel.

The model was launched at an elevation angle of 67 ° 17 ' with respect

to the horizontal. The model was boosted by a Cajun rocket motor and

was accelerated to a Mach number of 3.86 at an altitude of 4,800 feet.

Atmospheric and wind conditions were measured by radiosonde balloons

launched near the time of flight and tracked with a rawin set AN/GMD-IA.

Velocity data were obtained by means of CW Doppler radar unit and the

telemetered stagnation pressure measurements. Altitude and flight-path

data were measured with an NACA modified SCR-584 space radar unit. Free-

stream temperature, pressure, density, and altitude related to model



flight time are shownin figure 3, and velocity, free-stream Machnum-
ber, and Reynolds numberper foot are plotted against time in figure 4.

DATAREDUCTION

From flight records of the modeL, the following information was
obtained: atmospheric properties and altitud_ (fig. 3); free-stream
Math nut,bet, Reynolds number, and velocity (f_ig. 4); pressure coeffi-
cients (fig. 5); and skin-temperature measurements(fig. 6).

The heat-transfer equation given in reference 3 for convection is

dQ- h(Taw- Tw)Adt

The time rate of change of heat contained in ,he skin is

dt w dt

Since conduction and radiation heat-transfer :rates are low enough to be

neg]ected_ the heat transferred to the skin bj convection is equal to

the quantity of heat contained in the skin

--dF--w A
h(Taw - Tw)A : (OCpT)w d_

Therefore

h- (pCpT)w dTw

Taw - Tw dt

From the local convective heat-transfer coefficient, the Stanton number

can be determined by

h

NSt - (cppV)_

From measured wall temperatures, flight conditions and measured pres-

sures, Stanton numbers were obtained by usin_

(Cp0T)w dTw i
NSt - ×

Taw - Twdt ,/(c_0V_z

The skim thickness Tw was measured and the density Pw of Inconel was

known. The specific heat of Inconel Cp, w _s given in reference 4 as
a function of temperature.
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Skin temperatures and _dTw were obtained from faired curves of the
dt

skin-temperature measurements. The adiabatic wall temperature Taw was
computed from the relation

Taw = _r(Ts- T_)+ T_

where the recovery factor _r was determined from the usual turbulent

relation _r = Nprl/3 with the Prandtl number evaluated at the wall

temperature. The turbulent value was used since the data indicate that

the boundary layer was turbulent over most of the body.

The local conditions for the test model were obtained by using the

local pressure measurements and making the assumption that all the flow

adjacent to the boundary layer had gone through the normal bow shock.

The total-pressure losses for the normal shock were taken from refer-

ence 5. It is possible that this assumption is not correct for points

on the rear of the body and this may account for some of the differences

between the measured and theoretical values shown. The total-pressure

losses through the flare shock were neglected.

Tabulated values of the pertinent quantities are given in table I

for all thermocouple locations.

RESULTS AND DISCUSSION

Pressure Measurements

The pressure measurements on the body are shown in figure 5

expressed as pressure coefficients and are plotted as a function of

free-stream Mach number for both the accelerating and decelerating peri-

ods of flight. Also presented in figure 5 are some u_published wind-

tunnel pressure coefficients at various Mach numbers for the same con-

figuration as the free-flight model, and pressure coefficients from

references i and 2. The wind-tunnel pressure coefficients were obtained

from tests conducted in the Langley Unitary Plan wind tunnel for the

Martin Company on a 1/25-scale model of the Titan.

In figure 5(a) are shown the pressure coefficients (designated

Cp2 , Cp_, and Cp4 ) obtained from measurements made at pressure orifice

stations P2, P3' and P4' respectively, located on the nose conical sec-

tion. The data for stations P3 and P4 are in good agreement with both

the wind-tunnel data and the data of reference i above a Mach number of

2. The data for station P2 during the_eceleration period of flight is

in good agreement with wind-tunnel data and reference i; however, during

the acceleration period of flight it is somewhat lower. Pressure lag

was computed and was found to be negligible and at the present no rea-

sonable explanation has been determined for this difference. It should
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theory, calculated by using 0.5 instead of 0.6 as the Reynolds analogy
constant, shows that the wall-heating data tend toward the 0.5 constant
rather than toward the 0.6 constant favored by the wall-cooling data.
The differences in the heating and cooling conditions do not offer an
explanation as to why the Reynolds analogy factor should changeand at
this time the reason is not known.

In general, the data of the three models substantiate each other.
Where there are apparently large differences, these can be attributed
to slightly different time histories of boundary-layer transition. The
principal difference in the data of reference 2 and that of reference i
and the third model which is reported herein is the presence of turbu-
lent flow on the nose of the model of reference 2 under conditions that
gave laminar or transitional flow on the other two models. This differ-
ence seemsto be the result of the blunter nose shape used on the model
of reference 2.

CONCLUDINGREMARKS

Flight tests have been madeof three i/!8-scale models of the Titan
intercontinental ballistic missile. In the flight test of the model-
reported herein and the two models previously tested laminar or transi-
tional boundary-layer heating rates were observed on the model i and
model 3 nose shape, whereas turbulent flow r_tes were observed over the
model 2 nose shape. The boundary layer over the cylinder and flare por-
tion of all three models appeared to be fully turbulent throughout
flight.

During the wall-heating portion of the flights, the heat-transfer
data were considerably lower than Van Driest s theory when a Stanton
number equal to 0.6 the skin-friction coeffi_:ient was used; however,

when Stanton number equal to 0.5 the skin-fr_ction coefficient was used,

the data were in much better agreement with )heory. During the wall-

cooling portions of the flights, the data agreed much better with theory

when a Stanton number equal to 0.6 the skin-friction coefficient was

used. For all flights, Van Driest's laminar theory was in good agree-

ment with the measured data when the flow wa_ fully laminar.

Langley Research Center,

National Aeronautics and Space Administzation,

Langley Field, Va., September 12, [958.
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(b) Model on launcher.

Figure i.- Concluded.

L-57-4877
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(b) Models i and 5 nose detail.

Figure 2.- Continued,
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Thermocouple
Iocotion no.

TI

T2
T3
T4
T5

7

Distance (]long model
from model sto. O

-4,06
-3.30
-2.2,4

-I.00

-l.O0

-I.00

-I.00

TI

4.07

%
%

.052

T5" TT+

T6

P4

21

5,568

_L

(c) Model 2 nose detail.

Figure 2.- Concluded.
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